syn- and anti-Selective Preparation of 3-Substituted-∆2-isoxazolines

Akio Kamimura* and Shinji Marumo

Department of Chemistry, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753, Japan

Summary: Both syn- and anti- isomers of 3-substituted- Δ^2 -isoxazolines can be prepared in a stereoselective way by the aldol reaction of 3-formyl- Δ^2 -isoxazolines and silyl enol ethers in the presence of appropriate Lewis acid.

Recently, Δ^2 -isoxazoline has become an important intermediate in organic synthesis.¹⁻³ This heterocycle can be readily converted into a γ -amino alcohol or a β -hydroxy ketone.^{4,5} The relative stereochemistry between C⁴ and C⁵ on the ring depends solely on geometry of the starting olefins, because concerted cycloaddition process between a nitrile oxide and an olefin proceeds in a stereospecific way. However, the cycloaddition of chiral nitrile oxides or their derivatives to olefin usually takes place in non-stereoselective way to give mixtures of a pair of diastereomers.⁶⁻⁸ It is meaningful to develop a useful method for a stereoselective carbon-carbon bond formation on the side chain of the ring.^{9,10} 3-Formyl- Δ^2 -isoxazoline should be a good candidate for this purpose. However, there have been a few reports concerning on this compound.¹¹ In this paper, we report stereoselective introduction of substituents on C³ position can be readily achieved by the aldol reaction of 3-formyl- Δ^2 -isoxazolines. Two possible diastereomers can be prepared with high stereoselectivity by the use of TiCl₄ or BF₃·OEt₂, respectively.

Treatment of 3-formyl- Δ^2 -isoxazoline 1 with various kinds of silyl enol ethers in the presence of appropriate Lewis acid afforded corresponding aldol adducts 2 (Scheme 1).¹² The results are summarized in Table 1. Various kinds of Lewis acids can be used for the reaction. While TiCl₄, ZnBr₂, and BF₃·OEt₂ give **2a** in good yield (run 1, 3, 5), SnCl₄ and AlCl₃ result in low to moderate yield of **2a** (run 2 and 4). The reaction with high reactive silyl enol ether proceeds smoothly in the presence of catalytic amounts of TiCl₄ (run 1, 6, 8, 11, 15). The products usually consist of a pair of diastereomers, which are syn-2 and anti-2. Their ratios were determined by HPLC analyses. TiCl₄ and SnCl₄ give syn-2a in high stereoselectivity (run 1 and 2). ZnBr₂ shows moderate synselectivity (run 3). The opposite isomer, anti-2a, is also prepared in the presence of AlCl₃ or BF₃·OEt₂ (run 4 and 5). BF₃·OEt₂ shows a somewhat better selectivity than AlCl₃. Since the formation of syn- and anti-2a is now possible, the reactions of other kinds of 1 are carried out. TiCl₄ always exhibits high syn-selectivity except the case of R¹ = H (run 6, 8, 10, 11 and 13). This selectivity is not observed in absence of substituent on C⁴ to give 1:1 mixture of anti-2g and syn-2g (run 15). Relative stereochemistry between C⁴ and C⁵ does not affect the syn-selectivity. On the other hand, while anti-2 is obtained as an almost single isomer from 4,5-cis substituted 1 under the BF₃·OEt₂ catalyzed conditions (run 5, 7, and 14), 4,5-trans substituted 1 gives a diastereomeric mixture of 2, whose ratio is about 6:4 to 7:3 (run 9 and 12). Some selectivity is observed in absence of the substituent on C⁴ to give 2g in 24/76 diastereomer ratio (run 16).

The stereochemistry of 2 was confirmed on comparison with ¹H NMR spectra after the conversion of syn-2f to 3 (Scheme 2).¹³

a: TBSCI, ImH, DMF, 60 °C b: NaBH₄ c: NaH, CS₂, MeId: Bu₃SnH, AIBN, 80 °C e: Raney-Ni, H₂, B(OH)₃

Scheme 2

These compounds can be readily converted into corresponding hydroxy ketones under the hydrogenation condition.¹⁴ For example, syn-2a and anti-2a gave compound 4 and 5 as a single diastereomer, respectively (Scheme 3).

This reaction pathway can be explained via chelation or non-chelation control of Lewis acid (Scheme 4).¹⁵⁻¹⁹ For example, TiCl₄ can coordinate to the oxygen in the formyl group and the nitrogen atom in the Δ^2 -isoxazoline ring to form five membered ring.¹⁰ A nucleophile can attack from the less hindered site, which is opposite site to R¹ group, to give syn-2 predominantly. In BF₃ system, on the other hands, this chelation is not formed but dipolar repulsion of C=O and C=N bond governs the conformation of 1 to give anti-2 selectively. In both cases, the substituents on C⁴ play an important role to determine the stereochemistry of the products. Further application of this reaction is now proceeding in our laboratory.

run	1	R ¹	R ²	R ³	R ⁴	R ⁵	Lewis acid	(eq)	time (h)	2; yi	əld (%) ^{a)}	syn/anti ^{b)}
1	:1a	-(CH	2)3-	н	Ph	Н	TiCl ₄	(0.1)	1	2a ;	89	96/4
2	· 1 a	-(CH	2)3-	н	Ph	н	SnCl ₄	(0.1)	1	2a;	48	96/4
3	1 a	-(CH	2)3-	н	Ph	н	ZnBr ₂	(1.0)	2	2a ;	93	63/37
4	-1 a	-(CH	2)3-	н	Ph	н	AICI ₃	(1.0)	2	2a ;	57	11/89
5	- 1 a	-(CH	2)3-	н	Ph	Н	BF3·OEt2	(1.0)	4	2a;	90	4/96
6	1 a	-(CH	2)3-	н	Ph	Me	TiCl4	(0.1)	1	2 b ;	99	98/2 ^{c)}
7	1 a	-(CH	2)3-	н	Ph	Me	BF3·OEt2	(1.0)	2	2b;	94	2/98d)
8	1 b	Ph	Н	Ph	Ph	н	TiCl4	(0.1)	1	2c;	76	96/4
9	1 b	Ph	Н	Ph	Ph	н	BF3 OEt2	(1.0)	1	2c;	89	39/61
10	1 b	Ph	H.	Ph	t-Bu	н	TiCl ₄	(1.3)	48	2d;	70 ^{e)}	96/4
11	1 c	Me	Н	Мө	Ph	н	TiCl ₄	(0.1)	6	2e ;	93	93/7
12	1 C	Me	н	Me	Ph	н	BF3·OEt2	(1.0)	8	2e ;	54	27/73
13	1 d	Me	i-Pr	Н	-(CH	2)4-	TiCl4	(1.0)) 1	2 f;	70	97/3
14	1 d	Me	i-Pr	н	-(CH	2)4-	BF3·OEt2	(1.0)	2	2f;	89	4/96
15	10	н	Ph	н	Ph	Н	TiCl4	(0.1)	2	2g;	96	53/47 ^{t)}
16	1 e	н	Ph	н	Ph	Н	BF3 OEt2	(1.0)	2	2g ;	88	24/76 ^{†)}

Table 1. Stereoselective Aldol Reaction of Silyl Enol Ethers to 1.

a) Isolated yield. b) Determined by HPLC analyses. c) Diastereomer ratio on syn- PhC(=O)CH(Me)-CH(OH)- was 81/17. d) Diastereomer ratio on anti- PhC(=O)CH(Me)-CH(OH)- was 71/27. e) Dehydrated olefin was isolated in 17% yield. f) Stereochemistry of **2g** was not determined.

Scheme 4

References and notes

- 1. Caramella, P.; Grünanger, P. in 1,3-Dipolar Cycloaddition Chemistry, Padwa, A. Ed. John Wiley & Sons, 1984, Vol. 1, p 291.
- 2. Curran, D. P. Advance in Cycloaddition, JAI Press Inc.: Greenwich, Connecticut, 1988, p 129.
- 3. Torssell, K. B. G. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, VCH Verlagsgesellschaft mbH: Weinheim, 1988.
- 4. Jäger, V.; Grund, H.; Franz, R.; Ehrler, R. Lect. Heterocyc. Chem. 1985, 8, 79.
- 5. Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410.
- 6. Kozikowski, A. P.; Kitagawa, Y.; Springer, J. P. J. Chem. Soc., Chem. Commun. 1983, 1460.
- 7. Larsen, K. E.; Torssell, K. B. G. Tetrahedron, 1984, 40, 2985.
- 8. Jones, R. H.; Robinson, G. C.; Thomas, E. J. Tetrahedron, 1984, 40, 177.
- 9. Curran. D. P.; Chao, J. -C. J. Am. Chem. Soc. 1987, 109, 3036.
- 10. Wade, P. A.; Price, D. T.; McCauley, J. P.; Carroll, P. J. J. Org. Chem. 1985, 50, 2805.
- (a) Kamimura, A.; Nishiguchi, T. submitted for publication. (b) Caldirola, P.; De Amici, M.; De Micheli, C.; Wade, P. A.; Price, D. T.; Bereznak, J. F. *Tetrahedron*, **1986**, *42*, 5267.
- 12. Typical experimental procedures are as following: To a solution of 1 (1 mmol) and silvl enol ether (1.3 mmol) in methylene chloride (10 mL) was added Lewis acid at -78 °C and the resulting mixture was stirred for 1-48 h till compound 1 disappeared on TLC. After the reaction was over, the solution was poured into 1 M HCl and extracted with ethyl acetate for three times. Purification of crude products by silica gel column chromatography gave pure adduct 2 in 54-99% yield. HPLC analyses were carried out on using TSK-gel ODS-80T column.
- 13. Masamune, S.; Choy, W.; Kerdesky, F. A. J.; Imperiali, B. J. Am. Chem. Soc. 1981, 103, 1566.
- 14. Curran, D. P. J. Am. Chem. Soc. 1983, 105, 5826.
- 15. Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556.
- 16. Reetz, M. T. Organotitanium Reagents in Organic Synthesis, Springer Verlag.: Berlin, 1986.
- 17. Fujisawa, T.; Ukaji, Y. Yuki Gosei Kagaku Kyokaishi, 1989, 47, 186.
- 18. Reetz, M. T.; Kesseler, J. Chem. Soc., Chem. Commun. 1984, 1079.
- 19. Keck, G. E.; Boden, E. P. Tetrahedron Lett. 1984, 25, 265.

(Received in Japan 14 May 1990; accepted 9 July 1990)